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a b s t r a c t

This paper presents two approximate analytical expressions for nonlinear electric fields in the principal
direction in axially symmetric (3D) and two dimensional (2D) ion trap mass analysers with apertures
(holes in case of 3D traps and slits in case of 2D traps) on the electrodes. Considered together (3D and 2D),
we present composite approximations for the principal unidirectional nonlinear electric fields in these
ion traps. The composite electric field E has the form

E = Enoaperture + Eaperture,

where Enoaperture is the field within an imagined trap which is identical to the practical trap except that the
apertures are missing and Eaperture is the field contribution due to apertures on the two trap electrodes.
The field along the principal axis of the trap can in this way be well approximated for any aperture that
is not too large.

To derive Eaperture, classical results of electrostatics have been extended to electrodes with finite thick-
ness and different aperture shapes.

Enoaperture is a modified truncated multipole expansion for the imagined trap with no aperture. The first
several terms in the multipole expansion are in principle exact (though numerically determined using the
BEM), while the last term is chosen to match the field at the electrode. This expansion, once computed,

works with any aperture in the practical trap.

The composite field approximation for axially symmetric (3D) traps is checked for three geometries:
the Paul trap, the cylindrical ion trap (CIT) and an arbitrary other trap. The approximation for 2D traps
is verified using two geometries: the linear ion trap (LIT) and the rectilinear ion trap (RIT). In each case,
for two aperture sizes (10% and 50% of the trap dimension), highly satisfactory fits are obtained. These
composite approximations may be used in more detailed nonlinear ion dynamics studies than have been

hitherto attempted.

. Introduction

This paper develops composite analytical approximations to
escribe electrostatic fields within axially symmetric (3D) and two

imensional (2D) ion trap mass analysers.1 The composite approx-

mation developed provides a description of the field right from the
enter of the trap up to and just beyond the apertures on the elec-
rodes, along the principal axis of the mass analyser. This may be

∗ Corresponding author at: Supercomputer Education and Research Centre, Indian
nstitute of Science, Bangalore, Karnataka 560012, India. Tel.: +91 80 2293 2979;
ax: +91 80 2360 0135.

E-mail addresses: madhuri@isu.iisc.ernet.in (M. Chattopadhyay),
eeraj.iisc@gmail.com (N.K. Verma), amohanty@serc.iisc.ernet.in (A.K. Mohanty).
1 Throughout this paper the descriptor 3D refers to traps with axial symmetry,

nd 2D to traps with planar symmetry. It should be noted, however, that the fields
n both these traps are three-dimensinal. In our analysis we use the symmetry to
implify the analysis and carry out a two-dimensional analysis of these traps.
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contrasted with the hitherto available multipole expansions, which
are local expansions for the field near the trap center, and break
down near the trap apertures. We see the greatest relevance of this
work, as we will discuss in greater detail at the end of the paper,
in miniaturized traps, where aperture sizes may not scale down
equally as overall trap dimension, necessitating a better under-
standing of their effects on fields in such traps.

This work can be motivated as follows. In the literature, the
dynamics of ions in rf traps has been studied by many investiga-
tors [5,9,18] who considered, essentially, an equation of motion of
the form:

d2u

d�2
+ (a − 2q cos 2�)f (u) = 0. (1)
When f (u) = u, we have the Mathieu equation, relevant to the
ideal Paul trap. For small trap imperfections or motions close to
the trap center, f (u) is a weakly nonlinear function of u. For traps
with non-hyperboloid geometry, and when we are interested in
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ynamics including motions approaching the electrodes, we must
ccount for strongly nonlinear f (u). This paper presents expres-
ions for the electric field that in turn determines what f (u) is. The
ynamics arising therefrom are left for future work.

In our composite approximation for the field alluded to above,
ome constant coefficients need to be evaluated numerically for a
rap with no aperture on the electrodes. After this, the field due to
pertures, from classical results [20,6], is added on analytically to
btain a composite approximation. This approximation is the first
uch description in the mass spectrometry literature. It provides an
xplicit formula for the contribution of the apertures in the elec-
rodes to the field within the trap, and is usefully accurate over the
ntire extent of the trap along its principal direction.

The mass analyser of an ideal ion trap mass spectrometer con-
ists of hyperbolic shaped electrodes. In the 3D Paul trap [13], the
ass analyser has three hyperbolic shaped electrodes with two

electrically shorted) end cap electrodes and one ring electrode.
he 2D LIT [3] consists of four hyperbolic shaped longitudinal elec-
rodes with the two opposite pairs of electrodes being electrically
horted. In the ideal traps, the electrodes are not truncated and
here are no apertures in the electrodes (in the 3D trap, the aper-
ures are the holes on the two endcap electrodes and in the 2D trap
hey are the slits on the two opposite electrodes). When an rf-only
r rf/dc potential is applied across the electrodes, a linear trapping
eld is created within the trap. Fragment ions of an analyte gas are
rapped at the center of the trap in the 3D traps and along the lon-
itudinal axis in the 2D traps. The motion of ions as well as the
tability of the ion motion is described by the Mathieu equation
11,10].

The practical trap differs in its geometry in two significant ways
rom its ideal counterpart. First, although the electrodes of the prac-
ical trap continue to have hyperbolic shapes, holes or apertures are
ntroduced in the electrodes for entry of electrons and exit of desta-
ilized fragment ions. In addition, the electrodes are truncated to
nite size to reduce their dimensions to manageable proportions.
hile these are intentional alterations carried out on the elec-

rodes, a few inadvertent modifications such as misalignment in
he positioning of electrodes, fabrication errors of the hyperbolic
rofile and uneven spacing between the electrodes further alter
he geometry of the practical trap. A second way in which some
ractical traps differ from the ideal 3D and the 2D structures are in
he shape of the electrodes. The electrodes of these newer traps no
onger have hyperbolic profiles but instead have easily machinable
imple profiles. Examples of such traps are the 3D cylindrical ion
rap (CIT) [8,21] and the 2D rectilinear ion trap (RIT) proposed by
uyang et al. [12]. The 3D CIT consists of two flat endcap electrodes
nd a cylindrical ring electrode while the 2D RIT consists of four
at plate electrodes. These electrodes too are truncated to finite
ize and they have apertures in them.

An important consequence of this alteration in geometry is that
he field within the trap is no longer linear and the linear Math-
eu equation can be used to describe the motion and stability only
lose to the center of the trap where the field can be assumed to
e linear. To understand ion dynamics in these nonlinear devices,
esearchers have resorted to numerical simulations (e.g., Franzen
t al. [5]) or, when analytical approach was required, used the
ultipole description of the field using Legendre polynomials [2].

xamples of the latter studies include those of Makarov [9], Sudakov
18], Abraham et al. [1], Rajanbabu et al. [15,16]. An important aspect
f these latter studies was that they focussed on the destabilization
ynamics of the ions near the trap center and were not concerned

ith large amplitude oscillations in the trap. Relatively few mul-

ipole weights sufficed to describe the field near the trap center.
hen ion oscillation amplitudes grew and ions approached the trap

oundary, where larger multipole weights became important, ions
ere considered already unstable and it was assumed that their
f Mass Spectrometry 282 (2009) 112–122 113

motion was not affected by the fields close to the apertures on the
electrodes through which they were ejected.

Although there have been some limited discussions [14,19] on
the contribution of holes on the electrodes to the field in the 3D
trap, an analytical description of the field within the entire trap has
not been available even for the standard practical trap. Plass et al.
[14] have, for instance, suggested the use of higher order multipoles
to characterize the field close to the electrodes, but if solely higher
order multipoles were to be used, then it would require many terms
to accurately describe the field near the discontinuities on the elec-
trodes caused by the apertures. In this paper, we present a viable
alternative.

Our motivation in this paper is to develop an accurate analytical
expression for the field in practical axially symmetric (3D) and 2D
traps which have apertures on their electrodes. The expression we
present will focus on the field only along the principal axis of the
trap, along which ion destabilization takes place.

After a brief description of the numerical method used by us
in the next section, we carry out a numerical study of the field in
the CIT in Section 3 to show that varying hole size does indeed
alter the field within the trap. We next present an overview of the
approach adopted by us. This is followed by, in Sections 5 and 6,
the development of the expression for the field in the 3D and the
2D geometries, respectively. In Section 7 approximate analytical
expression is tested on a few arbitrary geometries. Finally, in Section
8, we present a few concluding remarks.

2. Numerical methods

To compute the field numerically for any ion trap having a sym-
metric geometry, we have developed a library which is based on
the boundary element method (BEM). By using this library, we can
easily define any trap geometry and can also specify the potential
applied to the electrodes.

The BEM based field computation has two steps. First, charge
distribution on electrodes is determined from the known applied
potential on the electrodes and second, the potential (and the field)
at any point in space is computed from the charge distribution on
the electrodes by the principle of superposition.

In order to compute charge distribution on the electrodes, the
electrode surfaces are divided into small regions or elements. Let
the total number of such elements be N and let vi be the potential
applied to ith element, Gi,j = g(i, j) be the potential at ith element
due to unit charge at jth element. The unknown charge qj is com-
puted using the principle of superposition from the expression

N∑
j=1

g(i, j)qj = vi, i = 1, . . . , N, (2)

where g(i, j) is called the Green’s function. Unknown charges qj can
be found by solving linear system of simultaneous equation (Eq.
(2)) provided g(i, j) is known. The Green’s function for 3D geome-
tries has been derived in Tallapragada et al. [19] and the 2D Green’s
function has been discussed in detail in Krishnaveni et al. [7]. The
computation of field and multipole coefficients from the numeri-
cally obtained charge distribution has also been discussed in those
two papers.

3. Numerical study of the field in the CIT with different hole
sizes
To demonstrate that the apertures do alter the field within the
trap, we numerically investigate the CIT proposed by Wu et al. [21]
as an example. The cross-sectional view of the CIT with geometry
parameters are presented in Fig. 1 (a) and the dimensions (in mm)
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ig. 1. (a) Cross-section view of the CIT with its dimensions given in the table below
mm (crosses) hole radius. All dimensions of geometry parameters given in the tab

sed in our computations have been given in the table below the
chematic. We have assumed that the electrodes have no thickness.
n our simulations, the endcaps have been kept at ground potential
nd the ring electrode at unit positive potential.

Fig. 1(b) is a plot of the numerically obtained field (in V/m) ver-
us distance from the centre of the trap (in mm). The plot of the
eld has been made to a distance just beyond the endcap electrode.
he discontinuous curve is the field variation in a trap which has
o holes on the endcap electrodes. The continuous curves super-

mposed by circles and crosses correspond to a trap which has hole
izes corresponding to 1 mm (10%) and 5 mm (50%) of the trap
adius, respectively.

It is apparent that introducing the hole has resulted in the field
cross the endcap electrode becoming smooth (that is, the hole
as the effect of eliminating the discontinuity). As the hole radius

ncreases, the field in the vicinity of the hole weakens, although
lose to the center of the trap there is no significant variation in the
eld with hole size. These simulations demonstrate that the dimen-
ion of the hole radius in the endcap electrodes does indeed alter
he field within the trap, especially in the vicinity of the endcap
lectrodes.

. Our approach

We assume that the field within a practical trap can be obtained
y superposing the field in a trap with no aperture with the field
ontribution of the apertures. Consequently, we write

= Enoaperture + Eaperture, (3)

here E is the field within the trap that we are seeking to find an
nalytical expression for, Enoaperture is an analytical expression for
he field within the trap with no apertures and Eaperture is an analyt-
cal expression corresponding to the contribution of the aperture
o the field in the vicinity of the aperture.

In this paper we will first develop an expression for Eaperture, the
ontribution of aperture to the field. Starting with an aperture in an
nfinitely thin, conducting plane, the field expression for which is
vailable in literature, we extend it to apertures in electrodes with

nite thickness. In this expression the dimension of the aperture is
free parameter in this expression.

Following this, we develop an analytical expression for
noaperture. For this we use a truncated multipole expansion to repre-
ent the field within a trap which has no apertures on its electrodes.
umerically obtained field for trap having no hole and 1 mm (circle) hole radius and
in mm.

Relatively few terms suffice to describe the field in a large region
of the trap and a deviation is observed only close to the trap elec-
trodes. To bring about a match (with the numerically obtained field)
near the electrodes we modify the truncated multipole expansion
by adding an extra term to correct for the field deviation near
the electrodes. All constants in the modified multipole expansion
expression are evaluated numerically.

With these two expressions incorporated in Eq. (3), we can esti-
mate the field within the trap for any reasonable hole size. In our
present work we have shown the utility of this expression for an
aperture size upto 50% of the size of the trap.

5. Fields in 3D traps

5.1. Contribution of the hole to the field

Having seen that the size of the hole on the endcap electrode
does indeed alter the field within the trap, we will next turn to
understand the contribution of the hole to the field within the 3D
trap. To understand the effect of the hole in the endcaps we first
consider the problem of a hole in an infinitely thin, conducting plane
as discussed in the literature [6]. Although this derivation is for a
thin plate, we will develop a theory capable of dealing with finite
width thick endcaps which are used in practical ion traps. Even
though the theory is exact for an infinite flat plate, our results will
demonstrate that even for traps with curved endcaps, the theory
predicts fields accurately.

The field distribution on either side of an infinitely thin, con-
ducting plane having no hole and with a uniform field E0 and E1 (as
seen in Fig. 2 (a)) on either side can be expressed as

Enohole(z) =
{

E1 if z > 0,
E0 if z < 0.

(4)

In the above and in what follows, all fields are understood to
be purely in the principal direction (here, z; and for the 2D case, y)
due to symmetry, and so only the scalar component in the principal
direction is dealt with.
To get an expression for the contribution of the hole to the field
within the trap, we will need to subtract the field when there is
no hole on the electrode from the field in the presence of a hole
of radius r on the electrode. This difference in field will give us the
contribution of the hole to the field.
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Fig. 2. (a) Schematic of an infinite thin metal plate with fields E0 ẑ and E1 ẑ
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ig. 3. Plot of the function �3D(�), which appears in expressions for the field contri-
ution due to the hole.

To get an analytical expression for the contribution of the hole
o the field we begin by considering the field along the axis of the
nfinitely thin, conducting plane, with constant fields E0 and E1 on
ither side. This problem has been widely discussed in classical lit-
rature and we adopt, in our present study, an expression provided
n Jackson [6]. In the presence of hole of radius R (Fig. 2(b)), the
xpression for the field across an infinitely thin, conducting plane,

withhole(z), is given by

withhole(z)= (E1+E0)
2

+ (E1−E0)
�

[
arctan(z/R)+ z/R

(z/R)2+1

]
, (5)

here z refers to the distance from the center of the hole.

Fig. 4. (a) Schematic of a CIT with thick electrodes with no ho
on either side and (b) the same plate with a circular hole of radius R.

The contribution of the hole can now be evaluated by subtracting
Eq. (4) from Eq. (5). This yields

Ewithhole(z) − Enohole(z) = − (E1 − E0)
2

sign(z/R)

+ (E1 − E0)
�

[
arctan(z/R) + z/R

(z/R)2 + 1

]
,

(6)

which can be written as

Ewithhole(z) − Enohole(z)

= �E

[
− sign(z/R)

2
+ 1

�

(
arctan

(
z/R
)

+ z/R

(z/R)2 + 1

)]
(7)

by substituting (E1 − E0) by �E. Hence, the contribution of the hole,
Ehole(z), can be written as

Ehole(z) = Ewithhole(z) − Enohole(z) = �E�3D(z/R), (8)

where

�3D(�) = − sign(�)
2

+ 1
�

(
arctan (�) + �

�2 + 1

)
. (9)

A plot of �3D is given in Fig. 3.

In the case of the practical trap, as shown in Fig. 1(a), which has

two electrodes and in which the origin of the co-ordinate system is
conventionally chosen as the center of the trap, z/r may be replaced
by (z − z0)/R for the upper endcap and by (z + z0)/R for the lower
endcap. With this substitution we will have two expressions which

les. (b) The same CIT in which the endcaps have holes.
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escribe the contribution of the holes on the two endcaps to the
eld within the trap.

To get the expression for the field within the trap we need to add
he field contributions of the hole in the two endcap electrodes (Eq.
8)) to an as yet unevaluated term Enohole(z). Enohole(z) corresponds
o the field within the trap when there are no holes in the endcap
lectrodes. Thus the expression for field within the trap, E3D(z), will
ave the form

3D(z) = Enohole(z) + (�E)z=z0
�3D

(
z − z0

R

)
+(�E)z=−z0

�3D

(
z + z0

R

)
. (10)

In the above equation the first term corresponds to the field
ithin the trap when there are no holes in the endcap electrodes

nd the second and third terms correspond to the field contribution
f the holes in the top and bottom endcap electrodes, respectively.

Since there is top-bottom symmetry in our trap geometry,
�E)z=z0

= (�E)z=−z0
and we will replace them by �E. The final

xpression then becomes

3D(z) = Enohole(z) + �E
[

�3D

(
z − z0

R

)
+ �3D

(
z + z0

R

)]
. (11)

Practical traps, of course, have endcap electrodes which have
nite thickness. Our study has revealed that the effect of finite
hickness of the electrode can easily be incorporated in the ana-
ytical expression by considering two infinitely thin electrodes to
epresent the thick electrode. Fig. 4 (a) is a schematic of a CIT with
ndcap electrodes having a thickness equal to z1 − z0 with no holes
n the endcap electrodes. Fig. 4(b) is a schematic of the same CIT
ith holes in the endcap electrodes, one infinitely thin electrode
aving a hole of radius R0, and the other having a hole of radius R1,
situation corresponding to a bevelled hole being drilled on the

ndcap electrode. If the hole is straight, then R0 = R1.
An inspection of Fig. 4 indicates that for the upper endcap, the

E corresponding to the inner infinitely thin plate is 0 − E0 = −E0,
hereas for the top plate it is E1 − 0 = E1. The situation is also true

or the lower endcap electrode. When these are introduced in the
eld equation we obtain the expression for E3D as

E3D(z)= Enohole(z)+(−E0)
[

�3D

(
z−z0

R0

)
+�3D

(
z+z0

R0

)]
+E1

[
�3D

(
z−z1

R1

)
+�3D

(
z+z1

R1

)]
.

(12)

It is worth noting that when z0 = z1, and R0 = R1, Eq. (12) reduces
o Eq. (10), which describes the field for endcaps with no thick-
ess. Our next effort will be to obtain an analytical expression for
nohole(z).

.2. Enohole(z)

To obtain the analytical expression for Enohole(z), we begin by
valuating the field within the CIT (Fig. 1(a)). We will first use a
umerically derived Enohole(z) to see if our Eq. (11) can be used to
pproximate the field within the trap.

To the numerically calculated field for the CIT presented in
ig. 1(a) in which r = 0 (that is the endcaps have no holes), we
dd the second term of Eq. (11)(the contribution of the holes in
he two endcap electrodes) for a hole radius equal to 10% of the

ing electrode radius.

Fig. 5 presents a comparison of the field obtained using Eq.
11)(circles) with that obtained entirely numerically (continuous
ine). The agreement between the two fields is seen to be excellent.
his provides us a clue that if an analytical expression for Enohole(z)
Fig. 5. Comparison of the fields within the CIT. Circles represent field obtained using
Eq. (11); smooth curve represents field obtained numerically.

can be derived, we can use Eq. (11) for describing the field within
the trap.

Among the different approaches that could potentially be used
for providing an analytical expression to fit the numerical data for
Enohole(z), we have chosen the use of the multipole expansion since
this is a familiar technique in the mass spectrometry literature to
represent the field in ion traps.

The potential at a point, u(�, �, 	), in spherical coordinates in an
axially symmetric trap can be expressed as

u(�, �, 	) = ˚

∞∑
n=0

An

(
�

L

)n

Pn(cos �). (13)

Here ˚ is the applied potential, An are the weights of the mul-
tipoles, Pn represents Legendre polynomial of n th degree, and L is
the normalizing length. Potential at a point on z-axis can be found
by putting � = 0 and � = z in Eq. (13) to get

u(z) = ˚

∞∑
n=0

An

(
z

L

)n

. (14)

From the potential expression of Eq. (14) the electrical field along
the z-axis can be expressed as

Ez(0, 0, z) = −∂u

∂z
(0, 0, z) = −˚

∞∑
n=0

nAn

(
zn−1

Ln

)
=

∞∑
n=0

˛nzn−1,

(15)

where

˛n = −˚
nAn

Ln
. (16)

Due to top bottom symmetry in geometries ˛n for odd n is zero.
Therefore,

Ez(0, 0, z) =
∞∑

k=1

˛2kz2k−1. (17)

Using a truncated form of Eq. (17) upto M terms, we have

Ez,truncated(0, 0, z; M) =
M∑

k=1

˛2kz2k−1. (18)
Since our motivation is to get an analytical expression for
Enohole(z) in Eq. (11), we will investigate how well the trun-
cated multipole expansion (Eq. (18)) matches with the numerically
obtained field for the CIT, shown in Fig. 1(a), but with no holes on the
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Table 1
Numerically obtained values of E0, ˛2, ˛4, ˛6 and ˛′

8.

discussion is shown in Fig. 7. In this trap the slit has been positioned
on the top and bottom electrodes and consequently we will present
the expression for the field along the y-axis. Unlike the detailed
demonstrations we presented for the axially symmetric (3D) traps,
ig. 6. Field along z-axis in CIT (no aperture). Continuous line represents numerically
btained field and circles represents the field obtained by (a) truncated multipole
xpansion and (b) with near electrode correction (no aperture).

ndcap electrodes. To do this we have chosen relatively few terms
n the expansion, up to M = 3.

Using the values of multipole weights (obtained numerically for
he CIT with no holes on the endcap electrodes) in Eq. (18), we
btain a plot for the field which is shown in Fig. 6 (a), marked with
ircles. Also superimposed in this curve is the numerically obtained
eld for the CIT with no holes on the endcap electrodes. It can be
een that the two curves agree very well near the center of the trap
ut there is significant deviation close to the endcaps.

To improve the match between the two curves near the endcap
lectrodes, we propose a modified truncated multipole expansion
y adding one additional higher order term, ˛′

2(M+1)z
2M+1, to the

xpansion for representing the field by the Eq. (21). We require

z,modified(0, 0, z) =
M∑

k=1

˛2kz2k−1 + ˛′
2(M+1)z

2M+1 (19)

o satisfy Ez,modified(0, 0, z) = E0, E0 being the numerically esti-
ated field at z = z0. It should be noted that ˛′

2(M+1) is not the
oefficient related to multipole weight A2(M+1), but is instead a con-
tant introduced to match the numerical field at the electrode. Thus,
he new coefficient ˛′

2(M+1) is obtained as

′
2(M+1) =

(
E0 −

M∑
k=1

˛2kz2k−1
0

)

z2M+1
0

. (20)

′
The value of E0, ˛2k and ˛2(M+1) obtained for the CIT under study
which has no hole in the endcap electrodes) are reported in Table 1.

With the value of ˛′
2(M+1) reported in Table 1 inserted in Eq.

19), we plot the field within the trap in Fig. 6(b) with circles. The
mooth curve corresponds to the numerically obtained field and
E0 ˛2 ˛4 ˛6 ˛′
8

123.97 14.404 4.4267 × 10−2 −7.6434 × 10−4 1.2094 × 10−6

it can be seen that Eq. (19) provides a very good description of the
field between the two endcap electrodes in the CIT with no holes on
the endcap electrodes. Consequently Enohole(z) can be represented
by the expression

Enohole(z) =
M∑

k=1

˛2kz2k−1 + ˛′
2(M+1)z

2M+1. (21)

5.3. Electric field in the axially symmetric (3D) trap

The final composite analytical expression for the field in a 3D
trap with electrodes of finite thickness has the form

E3D(z) =
M∑

k=1

˛2kz2k−1 + ˛′
2(M+1)z

2M+1

+(−E0)
[

�3D

(
z − z0

R0

)
+ �3D

(
z + z0

R0

)]
+E1

[
�3D

(
z − z1

R1

)
+ �3D

(
z + z1

R1

)]
.

. (22)

In Eq. (22), the first two terms correspond to the field in the
3D trap with no holes and the remaining terms correspond to the
contribution of the hole.

6. Fields in 2D traps

We next turn to the 2D trap and present the approximate
analytical equations for the field along an axis of the trap. The
cross-sectional view of the RIT which is taken as an example for the
Fig. 7. Cross-section of the rectilinear ion trap.
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Fig. 8. (a) Schematic of an RIT with thick electrodes wi

ere we will present just the expressions, leaving the verification
f these equations to Section 7.

.1. Contribution of the slit to the field

To get the analytical expression for the field in the 2D trap,
he field has been derived in elliptic cylindrical co-ordinates and
he contribution due to the slit on the electrode are expressed, as
erived in Smythe [17], as

withslit(y) − Enoslit(y) = (E1 − E0)
2

[
−sign(y/h) + y/h√

(y/h)2 + 1

]
.

(23)

Ewithslit(y) and Enoslit(y) have the same connotation as Ewithhole(z)
nd Enohole(z) in the 3D case, h is the half-width of the slit, E1 and
0 are the y-components of the fields on either side of the electrode
n the absence of the slit at the center of the electrode.

The field, E2D(y), inside the 2D traps can be expressed as

2D(y) = Enoslit(y) + �E
[

�2D

(
y − y0

h

)
+ �2D

(
y + y0

h

)]
, (24)

here

2D(�) = 1
2

[
−sign(�) + �√

�2 + 1

]
. (25)

Similar to 3D, here we treat the electrodes of the practical trap
s two plates with slits, at a distance y0 and y1 along the y-axis, on
he elctrodes from the trap centre.

Fig. 8 (a) presents the geometry of the RIT with electrodes hav-
ng finite thickness and with no slits in the opposite electrodes. Also
hown are the field orientations near those electrodes. Fig. 8(b)
s the schematic of the same RIT with beveled slits on the end-
ap electrodes. The two different slit widths on the electrodes have
imensions h0 and h1.

Thus the contribution of the slits that would replace the Ewithslit
omponent in the 2D field Eq. (29) is

Eslit(y) = E1

[
�2D

(
y − y1

h1

)
+ �2D

(
y + y1

h1

)]
(26)
−E0

[
�2D

(
y − y0

h0

)
+ �3D

(
y + y0

h0

)]
.

For this expression to be used for mass analysers with same
eometry parameters but with different slit width, the same con-
slits. (b) The same RIT in which the endcaps have slits.

stants evaluated for the original mass analyser are used and only
the width of the slit h, on the endcap electrode is modified. The con-
stants include �E and the multipole coefficients ˇ2k, ˇ′

2(M+1) and
are to be evaluated numerically. None of these constants depend
on h and their evaluation is done for a trap without any slit on the
endcap electrodes.

6.2. Enoslit(y)

Analogous to the 3D geometries (Section 5.2) here again we need
to evaluate the field without a hole in the electrodes. Using the same
methodology we obtain

Enoslit(y) =
M∑

k=1

ˇ2ky2k−1 + ˇ′
2(M+1)y

2M+1, (27)

where ˇ2k refers to the even order multipoles. As in the 3D case the
expression for field (Eq. (27)) contains an additional higher order
term ˇ′

2(M+1) to match the numerically estimated field. ˇ′
2(M+1) is

numerically estimated using the field at y = y0 by the expression

ˇ′
2(M+1) =

(
E0 −

M∑
k=1

ˇ2ky2k−1
0

)
/y2M+1

0 . (28)

6.3. Electric field in the 2D trap

Again, similar to the 3D geometries, we have the composite
expression for the field given by

E2D(y) =
M∑

k=1

ˇ2ky2k−1 + ˇ′
2(M+1)y

2M+1

+E1

[
�2D

(
y − y1

h1

)
+ �2D

(
y + y1

h1

)]
−E0

[
�2D

(
y − y0

)
+ �2D

(
y + y0

)]
.

(29)
h0 h0

In Eq. (29), the first two terms correspond to the field in the
2D trap with no slits and the remaining terms correspond to the
contribution of the slits in the electrodes.
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Table 2
Values of constants in Eq. (22) for the Paul trap (z is in mm).

E

1

7

d
t
a
(
(
c
d
a

b
e
b
e

Inserting the constants tabulated in Table 2 into Eq. (22) yielded

F
g

0 E1 ˛2 ˛4 ˛6 ˛′
8

41.59 −20.333 20.031 −1.1903 × 10−5 −3.2079 × 10−6 1.109 × 10−8

. Results and discussions

We next turn to verifying the validity of Eqs. (22) and (29) to
escribe the field within the 3D and 2D ion trap geometries, respec-
ively. For doing this, we have chosen the Paul trap, the CIT and
n arbitrary geometry, labelled as stepped ring electrode ion trap
SRIT), to verify the 3D electric field equation and the linear ion trap
LIT) and the RIT to verify the 2D electric field equation. In each
ase we have plotted, with circles, the electric field for an aperture
imension of 10% of the dimension of the trap and with crosses, the
perture dimension of 50% of the trap dimension.

To use Eqs. (22) and (29), two sets of constants are required to

e evaluated numerically first. For a trap with no apertures, the
lectric field difference on either side of the electrode �E (obtained
y evaluating E0 and E1), ˛2k, ˛′

2(M+1) for the 3D trap needs to be
valuated and �E, ˇ2k, ˇ′

2(M+1) for the 2D trap needs to be evaluated.

ig. 9. (a) Cross-sectional view of Paul trap and (b) electric field plot along the axial direct
eometry parameters indicated in the table are in mm.

Fig. 10. (a) Cross-sectional view of CIT and (b) electric field plot along z-axis. A
f Mass Spectrometry 282 (2009) 112–122 119

When these constants are inserted into the respective equations
(Eq. (22) for 3D geometries and Eq. (29) for 2D geometries), they
can be used to obtain the field along the principal axis for the traps
with apertures of any size.

We begin with the verification of the 3D field equation first and
then present the results for the 2D field equation.

7.1. Axially symmetric (3D) traps

7.1.1. The Paul trap
Fig. 9 (a) presents the schematic diagram of the Paul trap on

which our simulations have been carried out. The table below the
figure gives the dimensions of the geometric parameters in mm.
In our simulations the ring electrode was kept at unit positive
potential and the endcap electrodes were kept at ground poten-
tial. Table 2 presents the constants obtained for this trap geometry
with no holes, these constants having been evaluated using the
BEM [19].
the plot shown in Fig. 9(b) for R0/r0 = 0.1 (circles) and for R0/r0 =
0.5 (crosses). The field strength (in V/m) has been plotted along
the ordinate while the distance from the centre of the trap plotted
along the abscissa (in mm). The numerically generated fields for

ion. Circles correspond to R0/r0 = 0.1 and crosses to R0/r0 = 0.5. All dimensions of

ll dimensions of the geometry parameters given in the table are in mm.



120 M. Chattopadhyay et al. / International Journal of Mass Spectrometry 282 (2009) 112–122

z-axis

t
b

t
i
T
d
h
f
h

c
l
t
A
c
w

7

u
t
F
p

i
fi
(
c
f
p

T
V

E

1

T
V

E

1

Fig. 11. (a) Cross-section of SRIT and (b) electric field distribution along its

hese two different hole radii have also been included in the figure
y continuous lines.

While the match between the field predicted by Eq. (22) and
he field obtained numerically for R0/r0 = 0.1 is excellent, there
s a marginal difference corresponding to the R0/r0 = 0.5 curve.
his difference arises predominantly due to the variation in the
imension of z0 which occurs when the aperture size is increased on
yperbolic electrodes. While this could, in principle, be corrected
or by inserting the actual value of z0, this has not been attempted
ere.

Another interesting feature of Eq. (22) may be observed in the
urve corresponding to R0/r0 = 0.1. It should be noted that the
ength of the hole has been chosen to be large for the purpose of
hese simulations (the length is equal to the radius of the trap).
lthough this an exaggerated length, the field predicted by Eq. (22)
losely follows the numerically obtained field, even flattening out
ithin the aperture.

.1.2. The CIT
Fig. 10 (a) presents the schematic diagram of the CIT geometry

sed in our simulations. The geometry parameters are given in the
able associated with the figure and all the dimensions are in mm.
or these simulations, the ring electrode was kept at unit positive
otential and the endcap electrodes at ground potential.

The different constants obtained for the geometry are given
n Table 3. Using these constants in Eq. (22) we have plotted the
elds as shown in Fig. 10(b). The ordinate shows the field strength

in V/m) and the abscissa shows the distance (in mm) from the
entre of the trap. The analytical field has been plotted as circles
or R0/r0 = 0.1 and with crosses for R0/r0 = 0.5. Also superim-
osed on these plots, are the numerically computed fields which

able 3
alues of constants in Eq. (22) for CIT (z is in mm).

0 E1 ˛2 ˛4 ˛6 ˛′
8

22.676 −10.892 14.4516 4.081 × 10−2 −7.732 × 10−4 1.46736 × 10−6

able 4
alues of constants in Eq. 22 for SRIT (z is in mm).

0 E1 ˛2 ˛4 ˛6 ˛′
8

03.3785 −8.4085 10.997 3.074 × 10−3 −1.213 × 10−4 −1.0387 × 10−7
. All dimensions of the geometry parameters given in the table are in mm.

are shown for the corresponding hole dimensions. It should be
noted here that the holes are bevelled and have two different
radii.

It has been observed from the plot that the field distribution
becomes smoother with the increase in hole radius. The thickness
of the endcap electrodes (5 mm) considered are quite large com-
pared with the trap dimension (10 mm). In spite of this the match
between the field predicted by Eq. (22) and that obtained numeri-
cally for the two different hole sizes is excellent.

7.1.3. The SRIT
Fig. 11 (a) presents the schematic diagram of an arbitrary trap,

which is a variant of CIT and referred to as SRIT by [19]. The geometry
parameters are given in the table associated with the schematic
diagram. Here too the dimensions are in mm. This simulation was
carried out with the ring electrode at unit positive potential and
endcap electrodes at ground potential.

The various constants obtained numerically (using BEM [19]) for
this geometry are tabulated in Table 4. Using these constants in Eq.
(22) we obtained the plot shown in Fig. 11(b). The field strength in
V/m, has been plotted along the ordinate and the distance from the
center along the axial direction of the trap expressed in mm, has
been plotted along the abscissa. As in earlier discussions, circles
have been used for the field along the axis when R0/r0 = 0.1, and
crosses have been used to for R/r0 = 0.5.

Similar to the other axially symmetric (3D) geometries consid-
ered, the analytical approximation shows excellent matching even
when the length of the hole is large.

7.2. Two dimensional traps

To verify the Eq. (29) to predict the field along the principal axis
in 2D traps, we have considered the LIT and the RIT.

7.2.1. The LIT
Fig. 12 (a) presents the schematic diagram of the LIT geom-

etry used in our simulations. The geometry parameters are
given in the table below the figure. In our simulations, one

pair of electrodes (along the x-axis) was kept at unit positive
potential, and the other pair of electrodes was kept at ground
potential.

The constants obtained for this geometry (using the BEM [7]) are
given in Table 5. Inserting these constants in Eq. (29) we plot the
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Fig. 12. (a) Cross-section of LIT and (b) electric field plot along y-axis for LIT. Circles have been used for h0/x0 = 0.1 and crosses for h0/x0 = 0.5. All dimensions of geometry
parameters given in the table are in mm.

Table 5
Values of constants in Eq. 29 for LIT (y is in mm).

E

1

fi
f
t
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a
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a
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u
t

Table 6
Values of constants in Eq. 29 for RIT (y is in mm).

F
p

0 E1 ˇ2 ˇ4 ˇ6 ˇ′
8

00.13 −18.3848 10.01637 3.72694 × 10−5 −6.971 × 10−7 −3.7431 × 10−11

eld analytically in Fig. 12(b). The abscissa represents the distance
rom the centre of the trap towards the electrodes with aper-
ures (in mm) and the ordinate shows the field strength (in V/m).
he field has been obtained for h0/x0 = 0.1 (indicated by circles)
nd for h0/x0 = 0.5 (indicated by crosses). The numerically com-
uted fields are superimposed on the analytically plotted curves
or the corresponding slit dimensions. The smoothness of the curves
ncreases with the increase in slit width.

In the LIT geometry considered, the thickness of the electrodes
re large (10 mm). Even for such large aperture lengths, the analyt-
cal field shows excellent fit to the numerically obtained fields.
.2.2. The RIT
Fig. 13 (a) presents the schematic diagram of the RIT geometry

sed in our simulations. Its geometry parameters are specified in
he table below the figure. For simulation the electrode pair with

ig. 13. (a) Cross-section of RIT and (b) electric field plot along y-axis for RIT. Circles repres
arameters indicated in the table are in mm.
E0 E1 ˇ2 ˇ4 ˇ6 ˇ′
8

83.71563 –29.2785 10.964 1.6647 × 10−5 −3.249 × 10−4 6.546818 × 10−7

no slit have been kept at unit positive potential while the electrode
pair with slits have been at ground potential.

The constant terms obtained for this geometry (using the BEM
[7]) are given in Table 6. Inserting these constants in Eq. (29), we
plot the fields as shown in Fig. 13(b). The fields have been obtained
for h0/x0 = 0.1 and for h0/x0 = 0.5, the former plotted with circles
and the latter with crosses. The abscissa shows the distance in mm
along y-axis of the trap and the ordinate indicates the field strength
in V/m. The superimposed plots, shown as continuous lines, are the
numerically computed fields for the corresponding slit dimensions.
Here too the smoothness of the curves is improved as the slit width

increases.

In the RIT geometry considered, the thickness of the electrodes
are 5 mm which is large compared to the trap dimension. Even
so, the analytically obtained field shows excellent match with the
numerically obtained field.

ent the field for h0/x0 = 0.1 and crosses for h0/x0 = 0.5. All dimensions of geometry
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. Concluding remarks

This paper presented approximate analytical expression for the
eld along the principal axis in axially symmetric (3D) and 2D
eometry ion traps. The expressions consisted of two parts. The
rst part is a modified truncated multipole expansion to approx-

mate the field within the trap which has no apertures on their
lectrodes. The second part is an analytical expression correspond-
ng to the contribution of the aperture on the two electrodes to the
eld in the vicinity of the electrodes. This latter expression incorpo-
ates the size of the aperture as well as thickness of the electrodes.
sing these expressions (Eqs. (22) and (29)), it is now possible to
stimate the field not just between the two electrodes with aper-
ures but also to a distance just beyond the electrodes in axially
ymmetric (3D) and 2D geometry traps, respectively.

This work is of particular significance to miniaturized traps,
specially at the MEMS scale (e.g., Blain et al. [4]) where ignoring
he effect of fields close to the electrodes is not possible for two
easons. First, ion oscillations amplitudes are no longer small com-
ared to trap dimensions and consequently the ion motion is indeed

nfluenced by the field close to the electrodes. Second, in the fabri-
ation of these devices, apertures on the one hand, and truncation
f the electrodes on the other, will not scale in the same propor-
ion as the trap dimensions. The proportionally “larger” apertures
s well as truncation of the electrodes that these miniature traps
ave, will contribute more significantly to the inhomogeneity of the
eld within the trap than it happens in the case of the practical trap
hich are commercially available.
Immediate applications of this theory are in numerical trajectory
imulations, whose region of validity will now extend up to and
lightly beyond the apertures, unlike prior studies based purely on
runcated multipole expansions. As a caution, we point out that
he theory presented here relates only to the field on the principal

[

[

f Mass Spectrometry 282 (2009) 112–122

axis of the trap. There may be a need in the future to explore the
possibilty of generalizing this theory to the off-axis case as well.
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